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Abstract. In data privacy, record linkage is a well known technique to evaluate
the disclosure risk of protected data. Given a file protected by means of a data
protection technique and a file that represents the information of an intruder,
record linkage can be used to link records in the two files. The larger the number
of correctly linked records, the larger the risk of disclosure. Because of that, record
linkage is used as a measure of disclosure risk. In this report we give an overview
of the work that we have been doing during the last months in the framework of
the DwB project, and the results we have obtained.

We first give an outline of disclosure risk measures, and then briefly describe
the development of a supervised learning method for distance-based record link-
age, which determines the optimum parameters for the linkage process. This cor-
responds to the consideration of the worst-case scenario because it means to find
the parameters that lead to a maximum risk.

1 Introduction

When databases are protected by means of a data protection method that reduces
the quality of the data, two aspects are of great importance: information loss (or
data utility) and disclosure risk. Measures have been developed to evalute both
aspects. Information loss measures evaluate in what extent the analyses a user
can do on the protected data are similar to the ones a user can do on the original
data. That is, whether e.g. for certain variables the regression coefficients on the
protected data would be the same or similar to the regression coefficients on the
original data. Disclosure risk measures evaluate in what extent a protected file can
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be used by an intruder to learn some information. It is clear that protecting data
by means of reducing its quality does not ensure confidentiality. For example, it is
clear that when we remove from a database all variables except the social security
number and the illness, disclosure is not avoided.

Record linkage is one of the tools used to measure disclosure risk. As we will
discuss later, one of its advantages over other approaches is its flexibility and that
it can be used in different scenarios. In fact, record linkage can be used in dynamic
environments. For example, it can be used when multiple protected versions of the
same data are released, or when intruders have information from different sources
and combine them to attack a published data set.

This document discusses several aspects of disclosure risk measures. In Sec-
tion 2 we give an overview of disclosure risk measures. Then, the rest of the paper
focuses on the use of re-identification algorithms, one of the approach to define
such disclosure risk measures.

2 Disclosure Risk Measures

In general, disclosure risk is defined in terms of the additional confidential infor-
mation or knowledge that an intruder can acquire from the protected data set.
According to [21, 29], disclosure risk can be studied from two perspectives:

• Identity disclosure. Disclosure takes place when a respondent is linked
to a particular record in the protected data set. This process of linking is
known as re-identification (of the respondent).

• Attribute disclosure. In this setting it is considered too strong to define
disclosure as the disclosure of the identity of the individual. Disclosure
takes place when the intruder can learn something new about an attribute
of a respondent, even when no relationship can be established between the
individual and the data. That is, disclosure takes place when the published
data set permits the intruder to increase his accuracy on an attribute of the
respondent. This approach was first formulated in [7] (see also [15] and [16]).

Interval disclosure is a measure, proposed in [11] and [12], for attribute disclo-
sure. It is defined according to the following procedure.

Definition 1 Interval disclosure. Each attribute is independently ranked and
a rank interval is defined around the value the attribute takes on each record. The
ranks of values within the interval for an attribute around record r should differ
less than p percent of the total number of records and the rank in the center of
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the interval should correspond to the value of the attribute in record r. Then,
the proportion of original values that fall into the interval centered around their
corresponding protected value is a measure of disclosure risk.

A 100 percent proportion means that an attacker is completely sure that the
original value lies in the interval around the protected value (interval disclosure).

From our point of view, some attribute disclosure is natural in any release of
data, otherwise, it is difficult to find any utility on the publication of data. Note
that e.g. almost any regression model leads to attribute disclosure because the
goal of a regression model is to estimate the value of a variable from the other
ones. Naturally, if the regression model really fits the data, the intruder can use
it to infer some values with no much uncertainty.

Because of that, identity disclosure has received much attention in the last
years and has been used to evaluate different protection methods. Its formulation
needs a concrete scenario. We present it below.

2.1 An Scenario for Identity Disclosure

The typical scenario for identity disclosure considers a protected data set and an
intruder having some partial information about the individuals described in the
published data set. The protected data set is assumed to be a data file, and it is
usual to consider that intruder’s information can be represented in the same way.
See e.g. [42, 44].

Formally, we consider data sets X with the usual structure of r rows (records)
and k columns (attributes). Naturally, each row contains the values of the at-
tributes for an individual.

The attributes in X can be classified [8, 33, 44] in three non-disjoint categories.

• Identifiers. These are attributes that unambiguously identify the respon-
dent. Examples are passport number, social security number, full name,
etc.

• Quasi-identifiers. These are attributes that, in combination, can be linked
with external information to re-identify some of the respondents. Examples
are age, birth date, gender, job, zipcode, etc. Although a single attribute
cannot identify an individual, a subset of them can.

• Confidential. These are attributes which contain sensitive information on
the respondent. For example, salary, religion, political affiliation, health
condition, etc.
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Using these three categories, an original data set X can be decomposed as
X = id||Xnc||Xc, where id are the identifiers, Xnc are the non-confidential quasi-
identifier attributes, and Xc are the confidential attributes. Let us consider the
protected data set X ′. X ′ is obtained from the application of a protection proce-
dure to X. This process takes into account the type of the attributes. It is usual
to proceed as follows [42, 23, 24].

• Identifiers. To avoid disclosure, identifiers are usually removed or en-
crypted in a preprocessing step. In this way, information cannot be linked
to specific respondents.

• Confidential. These attributes Xc are usually not modified. So, we have
X ′

c = Xc.

• Quasi-identifiers. They cannot be removed as almost all attributes can
be quasi-identifiers. The usual approach to preserve the privacy of the indi-
viduals is to apply protection procedures to these attributes. We will use ρ
to denote the protection procedure. Therefore, we have X ′

nc = ρ(Xnc).

Therefore, we have X ′ = ρ(Xnc)||Xc. Proceeding in this way, we allow third
parties to have precise information on confidential data without revealing to whom
the confidential data belongs to.

In this scenario we have identity disclosure when an intruder, having some
information described in terms of a set of records and some quasi-identifiers, can
correctly link his information with the published data set. That is, he is able to
link his records with the ones in the protected data set. Then, if the links between
records are correct, he will be able to obtain the right values for the confidential
attributes.

Figure 1 represents this situation. A represents the file with data from the
protected data set (i.e., containing records from X ′) and B represents the file with
the records of the intruder. B is usually defined in terms of the original data set X,
because it is assumed that the intruder has a subset of X. In general, the number
of records owned by the intruder and the number of records in the protected data
file will differ.

Re-identification is typically achieved using some common quasi-identifiers on
both X and X ′. They permit to link pairs of records (using record linkage al-
gorithms) from both files, and, then, the confidential attribute is linked to the
identifiers. At this point re-identification is achieved.

Formally, following [44, 26, 42] and the notation in Figure 1, the intruder is as-
sumed to know the non-confidential quasi-identifiers Xnc = {a1, . . . , an} together
with the identifiers Id = {i1, i2, . . . }. Then, the linkage is between identifiers
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Figure 1: Disclosure Risk Scenario.

(a1, . . . , an) from the protected data (X ′
nc) and the same attributes from the in-

truder (Xnc).

2.2 Measures for Identity Disclosure

Two main approaches exists for measuring identity disclosure risk. They are known
by uniqueness and re-identification. We describe them below.

• Re-identification. Risk is defined as an estimation of the number of re-
identifications that might be obtained by an intruder. This estimation is
obtained empirically through record linkage algorithms. This approach for
measuring disclosure risk goes back, at least, to [39] and [29] (using e.g.
the algorithm described in [30]). [44, 26, 42] are more recent papers using
this approach. This approach is general enough to be applied in different
contexts. It can be applied under different assumptions of intruder’s knowl-
edge, and under different assumptions on protection procedures. It can even
be applied when protected data has been generated using a synthetic data
generator (i.e., data is constructed using a particular data model). For ex-
ample, [44] describes empirical results about using several implementations
of distance-based record linkage algorithms on synthetic data. The perfor-
mance of different algorithms is discussed. [55] considers a similar problem.
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Record linkage can also be used in dynamic environments, when multiple
protected versions of the same data set are released on the fly, or when in-
truders have information from different sources and combine them to attack
a published data set. See e.g. [40] where we deal with the problem of multiple
releases of k-anonymous data sets and k-anonymous relational databases.

• Uniqueness. Informally, the risk of identity disclosure is measured as the
probability that rare combinations of attribute values in the protected data
set are indeed rare in the original population.

This approach is typically used when data is protected using sampling [53]
(i.e., X ′ is just a subset of X). Note that with perturbative methods it
makes no sense to investigate the probability that a rare combination of
protected values is rare in the original data set, because that combination is
most probably not found in the original data set.

Because of the versatility of re-identification, and its suitability for modelling
a large variety of scenarios, we proposed to use this approach in this project.

In the next section we discuss with some detail record linkage algorithms,
the ones used for re-identification when we focus on the problem of re-identifying
records. Note that other algorithms can also be appropriate for disclosure risk
assessment. For example, when the schema of the published data and the one of
the data of the intruder are not equal, schema matching algorithms are useful.
See [46] for a discussion on scenarios where re-identification algorithms other than
record linkage are useful.

2.3 Record Linkage

Record linkage is the process of finding quickly and accurately two or more records
distributed in different databases (or data sources in general) that make reference
to the same entity or individual. This term was initially introduced in the public
health area by [17], when files of individual patients were brought together using
name, date-of-birth and other information. As briefly stated above, identifying
links between the protected data set and the original one, we can evaluate the
re-identification risk of the data by an intruder.

This approach for measuring disclosure risk directly follows the scenario in
Figure 1. That is, record linkage consists of linking each record b of the intruder
(file B) to a record a in the original file A. The pair (a, b) is a match if b turns
out to be the original record corresponding to a. For applying record linkage, the
common approach is to use the shared attributes (some quasi-identifiers). As the
number of matches is an estimation of the number of re-identifications that an
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intruder can achieve, disclosure risk is defined as the proportion of matches among
the total number of records in B.

Two main types of record linkage algorithms are described in the literature:
distance-based and probabilistic. They are outlined below. For details on these
methods see [45].

• Distance-based record linkage. Each record b in B is linked to its nearest
record a in A. An appropriate definition of a record-level distance has to
be supplied to the algorithm to express nearness. This distance is usually
constructed from distance functions defined at the level of attributes. In
addition, we need to standardize attributes as well as assign weights to
them.

[31] proposed distance-based record linkage to assess the disclosure risk for
microaggregation. They used Euclidean distance and equal weight for all
attributes. Later, in [12], distance-based record linkage (also with Euclidean
distance and equal weights) was used for evaluating other masking methods
as well. In their empirical work, distance-based record linkage outperforms
probabilistic record linkage (See Section 2.3 below).

The main advantages of using distances for record linkage are simplicity for
the implementer and intuitiveness for the user. Another strong point is that
subjective information (about individuals or attributes) can be included in
the re-identification process by means of appropriate distances.

The main difficulties for distance-based record linkage are (i) the selection of
the appropriate distance function, and (ii) the determination of the weights.
In relation to the distance function, for numerical data, the Euclidean dis-
tance is the most used distance. Nevertheless, other distances have also been
used as e.g. Mahalanobis [44], and some Kernel-based ones [44]. The diffi-
culty of choosing a distance is especially thorny in the cases of categorical
attributes and of masking methods such as local recoding where the masked
file contains new labels with respect to the original data set. The determi-
nation of the weights is also a rellevant problem that is difficult to solve. In
the case of the Euclidean distance, it is common to assign equal weights to
all attributes, and in the case of the Mahalanobis distance, this problem is
avoided because weights are extracted from the covariance matrix. As an
alternative, we have developed an approach based on supervised machine
learning (see Section 3 for details).

• Probabilistic record linkage

Probabilistic record linkage also links pairs of records (a, b) in data sets
A and B, respectively. For each pair, an index is computed. Then, two
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thresholds LT and NLT in the index range are used to label the pair as
linked, clerical or non-linked pair: if the index is above LT , the pair is
linked; if it is below NLT , the pair is non-linked; a clerical pair is one that
cannot be automatically classified as linked or non-linked.

When independence between attributes is assumed, the index can be com-
puted from the following two conditional probabilities for each attribute:
the probability P (1|M) of coincidence between the values of the attribute
in two records a and b given that these records are a real match, and the
probability P (0|U) of non-coincidence between the values of the attribute
given that a and b are a real unmatch.

To use probabilistic record linkage in an effective way, we need to set the
thresholds LT and NLT and estimate the conditional probabilities P (1|M)
and P (0|U) used in the computation of the indices. In plain words, thresh-
olds are computed from: (i) the probability P (LP |U) of linking a pair that
is an unmatched pair (a false positive or false linkage) and (ii) the proba-
bility P (NP |M) of not linking a pair that is a match (a false negative or
false unlinkage). Conditional probabilities P (1|M) and P (0|U) are usually
estimated using the EM algorithm [10].

The original description of probabilistic record linkage can be found in [19]
and [20]. [45] describe the method in detail (with examples) and [54] presents
a review of the state of the art on probabilistic record linkage. In particu-
lar, this latter paper includes a discussion concerning non-independent at-
tributes. A (hierarchical) graphical model has recently been proposed [32]
that compares favorably with previous approaches.

Probabilistic record linkage methods are less simple than distance-based
ones. However, they do not require rescaling or weighting of attributes. The
user only needs to provide the two probabilities P (LP |U) (false positives)
and P (NP |M) (false negatives).

The approaches described so far for record linkage do not use any information
about the data protection process. That is, they use files A and B and try to
re-identify as much records as possible. In this sense, they are general purpose
record linkage algorithms.

In the last years, specific record linkage algorithms have been developed. They
take advantage of any information available about the data protection procedure.
That is, protection procedures are analyzed in detail to find flaws that can be
used for computing more efficiently, with larger matching rates, record linkage
algorithms. Attacks tailored for two protection procedures are reported in the
literature. [47] was the first specific record linkage approach for microaggregation.
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More effective algorithms have been proposed in [28, 27] (for either univariate and
multivariate microaggregation). [26] describes an algorithm for data protection
using rank swapping.

The scenario described above can be relaxed so that the published file and the
one of the intruder do not share the set of variables. I.e., there are no common
quasi-identifiers in the two files. A few record linkage algorithms have been de-
veloped under this premise. In this case, some structural information is assumed
to be common in both files. [43] follows this approach. Its use for disclosure risk
assessment is described in [13].

In this document we focus on the case that the two files are described in terms
of the same schema, and that the intruder applies a distance-based record linkage
for attacking the protected data set. Because of that in Section 2.6 we review a few
distance functions to be used within the distance-based record linkage algorithm.
Then, in Section 3, we review a supervised learning approach for record linkage.

As we will see below, some of the distances are parametric. That is, they de-
pend on some parameters (weights) for the attributes under consideration. This
causes that the effectiveness of the record linkage algorithm depends on an appro-
priate selection of the weights. The worst-case analysis corresponds to the case
in which an intruder selects the best possible parameterization. Following the
approaches found in optimization and supervised machine learning, we define the
best possible parameterization as the one that leads to the maximum number of
re-identifications. Then, we define a mathematical programming problem in this
way, and its solution permits to evaluate the risk of such worst-case scenario.

2.4 Re-identification and Record Linkage: Formaliza-

tion

The fact that the worst-case scenario is rellevant for disclosure risk assessment
relates to the fact that a data protection is acceptable if the risk is low for any
attack. In other words, when a data file is released, the application by the intruder
of any record linkage method with his own data should lead to low bounds of re-
identification. Note that even if for most algorithms, re-identifcation bounds are
low but there is at least one that leads to disclosure, the intruder might apply this
one to compromise the data.

In order to make the concept of re-identification precise, we need a formal
definition. That is, we need a definition that makes explicit which are the re-
identification methods and which are not. We have worked towards a formaliza-
tion of re-identification algorithms based on the concepts of probabilities, belief
functions, and compatible belief functions [6, 38].

We reproduce below our first definition of re-identification method which is
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then refined into the precise concept of compatibility. Informally, we define that an
algorithm is a re-identification algorithm when it leads to a probability distribution
that is compatible with the true one. We understand the true one as the probability
we would have if there is no uncertainty in the data protection process. Then,
when uncertainty is present, we accept only those probabilities that represent the
existing uncertainty, but we do not accept in any case any arbitrary probability.
For example, when an attribute is not available to the intruder, it is clear that some
information is lost. But the available attributes constraint possible probabilities.
Any re-identification algorithm should take such constraints into account when
assigning the probabilities.

Definition 2 [41] Let ρ be a method for anonymization of databases, X a table
with n records indexed by I in the space of tables D and Y := ρ(X) the anonymiza-
tion of X using ρ. Then a re-identification method is a function that, given a
collection of entries y in P(Y ) and some additional information from a space of
auxiliary informations A, returns the probability that y are entries from the record
with index i ∈ I,

r : P(Y )×A → [0, 1]n

(y, a) 7→ (P (y corresponds to record X[i]) : i ∈ I) .

Consider the objective probability distribution corresponding to the re-identification
problem. Then, we require from a re-identification method that it returns a proba-
bility distribution that is compatible with this probability, also when missing some
relevant information. Compatibility can be modeled in terms of compatibility of
belief functions (see [6, 38]).

Let us now consider the more precise definition. As this definition uses the
concept of compatibility between two probabilities, we also give this definition.
Compatibility is expressed in terms of belief functions and the pignistic transfor-
mation. See [51] for more details and the application of these definitions to risk
assessment in data protection.

Definition 3 [52] Given two probabilities P and P ′, we say that P ′ is compatible
with P if there exists a belief function Bel compatible with P such that P ′ is the
pignistic probability distribution derived from Bel (i.e., P ′ = PBel).

Definition 4 [52] Let ρ be a method for anonymization of databases, X a table
in the space of tables D and Y := ρ(X) the anonymization of X using ρ. Let
Pρ,X,Y (xi|y) be the true probability of ρ, X. Then, an algorithm is a record linkage
algorithm when it returns a probability distribution P ′ that is compatible with the
true probability Pρ,X,Y (xi|y).
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2.5 On two Alternative Probabilistic Methods

In Section 2.3 we have reviewed the probabilistic record linkage framework ac-
cording to Fellegi and Sunter [19]. In a recent work, Skinner [36] compares this
approach and the probabilistic modeling framework based on the Poisson log-
linear model. This latter approach is described in [18, 37] for the case in which
misclassification is not considered. [36] shows that the two frameworks can be seen
from a unique perspective. Later, [35] defines disclosure risk measures that take
into account misclassification. Note that misclassification is relevant in statistical
disclosure control because is introduced on purpose by data protection methods.

Within the framework of this project, [34] has provided empirical evidence of
the result in [36], demonstrating how disclosure risk can be assessed for a highly
perturbed dataset containing business data from a 1982 Queensland, Australia
Survey of Sugar Farms.

2.6 Distances for Distance-Based Record Linkage

In this section we review distances used in distance-based record linkage. We con-
sider the Euclidean distance and the Mahalanobis one. In the definitions below, we
use V X

1 , . . . , V X
n and V Y

1 , . . . , V Y
n to denote the set of variables of file X and Y , re-

spectively. Using this notation, we express the values of each variable of a record a
in X as a = (V X

1 (a), . . . , V X
n (a)) and of a record b in Y as b = (V Y

1 (b), . . . , V Y
n (b)).

V X
i corresponds to the mean of the values of variable V X

i .

DBRL: The Euclidean distance is used for attribute-standardized data. Accord-
ingly, the distance between two records a and b is defined by:

d(a, b)2 =
n
∑

i=1

(

V X
i (a) − V X

i

σ(V X
i )

−
V Y
i (b) − V Y

i

σ(V Y
i )

)2

(1)

DBRLM: The Mahalanobis distance between records a and b is defined by:

d(a, b)2 = (a − b)′Σ−1(a − b) (2)

where, Σ is the covariance matrix. Note that if the covariance matrix is the
identity matrix, the Mahalanobis distance reduces to the Euclidean one.

Other distances can be considered. Some of them can be seen as generalizations
of the Euclidean distance. In particular, observing the Euclidean distance between
two records as the arithmetic mean of the distances between the attributes, we can
consider replacing the arithmetic mean by any other mean as e.g. the weighted
mean. Some of such distances are reviewed below.
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Let us detail this process. First, let us define di as the distance of the ith
attribute:

di(a, b)
2 =

(

V X
i (a) − V X

i

σ(V X
i )

−
V Y
i (b) − V Y

i

σ(V Y
i )

)2

(3)

Then, we can rewrite Equation 1 as

d(a, b)2 = n2 ·AM(d1(a, b)
2, . . . , dn(a, b)

2),

where AM is the arithmetic mean AM(c1, . . . , cn) =
∑

i ci/n.
It is easy to prove that a distance-based record linkage using distance d(a, b) will

result in the same number of re-identifications that using the expression d(a, b)/n.
Because of that in the rest of this section we will drop the factor n from the
expressions.

In general, any aggregation operator C [48] can be used to define a distance as
follows:

dC(a, b)
2 = C(d1(a, b)

2, . . . , dn(a, b)
2).

From this definition, it is straightforward to consider weighted variations. We
consider three variations below, which we have used for disclosure risk assessment.
We begin the weighted Euclidean distance, which is based on the weighted mean.

DBRLW: Let p = (p1, . . . , pn) be a weighting vector (i.e., pi ≥ 0 and
∑

i pi = 1).
Then, the weighted distance is defined as:

d2WMp(a, b) = WMp(d1(a, b)
2, . . . , dn(a, b)

2),

where WMp = (c1, . . . , cn) =
∑

i pi · ci.

Another aggregation operator we have considered is the Choquet integral. The
main difference with the weigthed mean is that it uses a fuzzy measure as its
parameter. The fuzzy measure permit to represent interactions (e.g. redundancy
and complementariness) between the attributes which cannot be represented in the
weights of the weighted mean. In short, weighted mean presumes that attributes
are independent and the Choquet integral does not.

DBRLCI: Let µ be an unconstrained fuzzy measure on the set of variables V ,
i.e. µ(∅) = 0, µ(V ) = 1, and µ(A) ≤ µ(B) when A ⊆ B for A ⊆ V , and
B ⊆ V . Then, the Choquet integral distance is defined as:

d2CIµ(a, b) = CIµ(d1(a, b)
2, . . . , dn(a, b)

2),
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where CI is the Choquet integral, i.e.,

CIµ(c1, . . . , cn) =

n∑

i=1

(cs(i) − cs(i−1))µ(As(i)),

given that cs(i) indicates a permutation of the indices so that 0 ≤ cs(1) ≤
. . . ≤ cs(i−1), cs(0) = 0, and As(i) = {cs(i), . . . , cs(n)}.

The last approach we have considered is based on the Mahalanobis distance.
To do so, firstly, we have to compute the normalized difference between two records
a ∈ X and b ∈ Y , with di(a, b) (squared root of Equation 3), and then, use the
Mahalanobis distance as an aggregation operator. The corresponding expression
is given below.

DBRLQ: Let Σ be an nxn invertible matrix with the role of a covariance matrix.
Then, the Mahalanobis distance is defined as:

d2MD∗(a, b) = MDΣ(d1(a, b), ..., dn(a, b))

where MDΣ(c1, ..., cn) = (c1, ..., cn)
TΣ−1(c1, ..., cn).

Note that Σ, is a symmetric matrix. Then, the diagonal of the matrix
expresses the relevance of each single variable in the re-identification process,
whereas the up or down triangle values of the matrix are the weights that
evaluates the interactions between each pair of variables.

The interest of the variations we have presented is that we do not need to
assume that all the attributes are equally important in the re-identification. This
would be the case if one of the attributes is a key-attribute, e.g. an attribute where
V X
i = V Y

i . In this case, the corresponding weight would be assigned to one, and
all the others to zero. Such an approach would lead to 100% of re-identifications.
Note that in DBRLCI and DBRLQ the interaction of different variables is taken
into account by the fuzzy measure, in contrast to DBRLW which can only weight
the variables individually.

Figure 2 representes a classification of the different distances we have defined.
The arithmetic mean is a special case of the weighted mean (when all the weights
are equal), and the weighted mean is also a special case of both the Choquet
integral and the Mahalanobis distance. For more details see [49].

3 Supervised Learning for Record Linkage

The idea of applying supervised learning for record linkage is to determine the best
parameters for an intruder to attack the data. Therefore, this corresponds to the
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Figure 2: Distances classification

worst-case scenario. We have applied this approach to the distances discussed in
the previous section. In the rest of this section we describe the formalization of
the problem. That is, which is the problem we solve to find the optimal weights.
We also give an overview of the results obtained.

3.1 Determination of the optimal weights

For the sake of simplicity, we presume that each record of X, Xi = (a1, . . . , aN ),
is the protected record of Y , Yi = (b1, . . . , bN ). That is, files are aligned. Then, if
Vk(ai) represents the value of the kth variable of the ith record, we will consider
the sets of values d(Vk(ai), Vk(bj)) for all pairs of records ai and bj .

Then, record i is correctly linked using aggregation operator C when the ag-
gregation of the values d(Vk(ai), Vk(bi)) for all k is smaller than the aggregation of
the values d(Vk(ai), Vk(bj)) for all i 6= j. I.e.,

C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) < C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj))) (4)

for all i 6= j. Then, the optimal performance of record linkage is achieved when
this equation holds for all records i.

To formalize the optimization problem and permit that the solution violates
some equations we consider the equation in blocks. We consider a block as the set
of equations concerning record i. I.e. we define a block as the set of all the distances
between one record of the original data and all the records of the protected data.

The rationale of this approach is as follows. We consider a variable K which
indicates, for each block, if all the corresponding constraints are satisfied (K = 0)
or not (K = 1). Then, we want to minimize the number of blocks non compliant
with the constraints. This way, we can find the best weights that minimize the
number of violations, or in other words, we can find the weights that maximize the
number of re-identifications between the original and protected data. Therefore,
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we have so many K as the number of rows of our original file. Besides, we need a
constant C that multipliesK to avoid the inconsistencies and satisfy the constraint.

Note that if for a record i, Equation (4) is violated for a certain record j, then,
it does not matter that other records j also violate the same Equation for the same
record i. This is so because record i will not be re-identified.

Using these variables, Ki and the constant C are defined as follows:

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj))) − C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0 (5)

for all i 6= j.
The constant C is used to express the minimum distance we require between

the correct link and the other incorrect links. The larger it is, the more the correct
links are distinguished from the incorrect links.

Using these constraints we can define the optimization problem for a given
aggregation operator C as:

Minimize

N
∑

i=1

Ki (6)

Subject to :

N
∑

i=1

N
∑

j=1

C(d(V1(ai), V1(bj)), . . . , d(Vn(ai), Vn(bj)))−

− C(d(V1(ai), V1(bi)), . . . , d(Vn(ai), Vn(bi))) + CKi > 0 (7)

Ki ∈ {0, 1} (8)

Additional constraints according to C (9)

where N is the number of records, and n the number of variables. This problem
is a linear optimization problem with linear constraints and the (global) optimum
solution can be found with an optimization algorithm. More explicitly, it can
be considered a mixed integer linear problem (MILP), because it is dealing with
integer and real-valued variables in the objective function and the constraints,
respectively. Note, that we only have considered aggregation operators with real-
valued weights.

If N is the number of records, and n the number of variables of the two data
sets X and Y . We have N terms of Ki in the objective function, that is N variables
for Equation (6). The total number of constraints in the optimization problem is
N2+N . There areN2 constraints from Equation (7), andN for Equation (8). Note
that depending on the aggregation operator C used, there will be more constraints
in the problem.
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3.1.1 Learning the Optimal Weights

Once the optimization problem is defined in general terms, we define in Table 1 the
additional constraints which are necessary for each specific aggregation operator.
For more details see our recent papers [1, 2, 50].

d2WM d2CI d2MD*1

Additional
∑n

i=1
pi = 1 µ(∅) = 0

Constraints pi ≥ 0 µ(V ) = 1 MDΣ(c1, . . . , cn) ≥ 0
µ(A) ≤ µ(B) when A ⊆ B

Table 1: Additional Constraints for the three variations of the problem.

3.2 Evaluation

We have evaluated our proposal with different protected files usingmicroaggregation[9],
a well-known microdata protection method, which broadly speaking, provides pri-
vacy by means of clustering the data into small clusters of size k, and then replacing
the original data by the centroid of their corresponding clusters. This parameter k
determines the protection level: the greater the k, the greater the protection and
at the same time the greater the information loss.

We have considered files with the following protection parameters:

• M4-33 : 4 variables microaggregated in groups of 2 with k = 3.

• M4-28 : 4 variables, first 2 variables with k = 2, and last 2 with k = 8.

• M4-82 : 4 variables, first 2 variables with k = 8, and last 2 with k = 2.

• M5-38 : 5 variables, first 3 variables with k = 3, and last 2 with k = 8.

• M6-385 : 6 variables, first 2 with k = 3, next 2 with k = 8, and last 2 with
k = 5.

• M6-853 : 6 variables, first 2 with k = 8, next 2 with k = 5, and last 2 with
k = 3.

For each case, we have protected 400 records randomly selected from the Census
dataset [5] from the European CASC project [4], which contains 1080 records and
13 variables, and has been extensively used in other works [22, 14, 56].

Note that in all cases, variables have been splitted into subsets and each of
these subsets has been microaggregated independently. This masking procedure
permits to have lower information loss than microaggregating all variables at the
same time, but also some disclosure risk.
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Note also that in our experiments we apply different protection degrees to
different variables of the same file. These vary between 2 to 8, i.e., values between
the lowest protection value and a good protection degree in accordance to [12].
This is especially interesting when variables have different sensitivity.

Table 2 shows the linkage ratio using the standard record linkage method
(d2AM); the Mahalanobis distance (d2MD); and the three supervised learning
approaches: the weighted mean (d2WM), the Choquet integral (d2CI) and finally
the approach based on the Mahalanobis distance (d2MD*) which were described
in Section 3.1. The values in the table are the ratio determining the correctly
identified records from the total, so a ratio of 1 means a 100% re-identification.

d2AM d2MD d2WM d2CI d2MD*1

M4-33 0.84 0.94 0.955 0.9575 0.9675
M4-28 0.685 0.9 0.93 0.9375 0.9425
M4-82 0.71 0.9275 0.9425 0.9425 0.9525
M5-38 0.3975 0.8825 0.905 0.9125 0.9225
M6-385 0.78 0.985 0.9925 0.9975 0.9975
M6-853 0.8475 0.98 0.9875 0.9925 0.995

Table 2: Improvement in the linkage ratio.

As it can be appreciated, our proposed methods achieve an important improve-
ment with respect to the standard distances based record linkage. However, the
improvement between the three supervised approaches is relatively small, espe-
cially between d2CI and d2MD∗. Although the difference between methods d2CI
and d2MD* is small, it is important to bear in mind that the Choquet integral
approach is computationally more expensive and complex. This is due to the num-
ber of constraints required in the optimization problem. This makes the proposed
use of the Mahalanobis distance more effective than the one using the Choquet
integral.

In our experiments we have used microaggregation, which is often applied in
combination with sampling. In such a case, the disclosure risk computed evaluates
only the disclosure risk of the microaggregation step and needs to be combined
with the one of sampling. Because of that, the risk computed is an upper bound
of the disclosure risk of the whole process.

4 Conclusions

In data privacy and statistical disclosure control, record linkage is used as a dis-
closure risk estimation of the protected data. This estimation is based on the links

1This is the supervised learning approach using the Mahalanobis distance.
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between records of the original and the protected data. The interest of record
linkage for disclosure risk measurement is due to the fact that it can be applied to
a large number of scenarios. For example, it can be applied to standard data pro-
tection methods but also to the case of synthetic data generators, multiple releases
of the same data, and intruders considering dynamic database integration.

In this document we have reviewed our recent results on record linkage. We
have outlined the formalization of re-identification and also how we can use op-
timization and supervised machine learning approaches to study the worst-case
scenario. As seen above, we have used different parameterized distances to find
the optimal weights for record linkage. The weights we obtain supply the user
information about the relevance of the attributes. For other results on dynamic
integration more oriented to specific technological solutions as JDBC drivers see
e.g. [25, 57].

The results described in this report are focused on numerical data. Never-
theless, record linkage can be applied to other types of data, as e.g. categorical
data or time series. Both probabilistic record linkage and distance based record
linkage has been applied to categorical data. Distance based record linkage has
been applied to time series. In fact, given a certain domain, as soon as a distance
function can be defined, distance based record linkage can be applied.

It is also important to note that the approach described in Section 3.1 for
the determination of the optimal weights is also applicable to these other types
of data. This is so because the optimization problem only depends on the values
d(Vk(ai), Vk(bj)), which only depend on the distance function. Once these values
are computed, the learning process can be applied and the optimal weights can be
found.
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